AQS Conference 2012 # Integrating United States And Canadian Air Monitoring Data Bill Sukloff Computer Systems Analyst Environment Canada ### Reports and Publications Source: 2012 Canadian Smog Science Assessment (Environment Canada / Health Canada) #### **Model Evaluation** # **International Agreements** #### **Publications** Ozone Concentrations along the Canada–U.S. Border (Three-Year Average of the Fourth-highest Daily Maximum 8-hour Average), 2006–2008 # Data Sources: Particulate Matter & Toxics Networks | Network | Sampling
Period | Start &
End Time | STP | Blank
Correcte
d | Flow Rate | Date | Size cut | |---------|--------------------|---------------------|----------------|------------------------|---------------|----------------|----------------| | AIRMoN | 7days | 0900-
0900 | STP (21°
C) | yes | 3I/min | 1984 | ND | | AMODES | 24hr | Var. | STP (25°
C) | yes | 20l/min | 1988 -
1990 | ND | | AQS | 24hr | Var. | Var. | yes & no | | 1995 | 2.5μm,
10μm | | APIOS-C | 28days | 0800-
0800 | Amb. | no | 2l/min | 1981 -
1993 | ND | | APIOS-D | 24hr | 0800-
0800 | Amb. | no | 20l/min | 1980 -
1993 | ND | | CAACP | 7 days | Var. | STP (
0°C) | yes | 1m**3/mi
n | 1980 | ND | | CAAMP | 24hr | 0800-
0800 | STP (
0°C) | no | 16.7l/min | 1992 -
1996 | 2.5μm,
10μm | | CAMNet | 24hr | Var. | Amb. | no | 0.75/min | 1995 | ND | # Data Sources: Particulate Matter & Toxics Networks | Network | Sampling
Period | Start & End
Time | STP | Blank
Corrected | Flow Rate | Date | Size cut | |---------|--------------------|-------------------------------|----------------|--------------------|--------------------------------|----------------|----------------| | CANCP | 7 days | 1100-1100 | STP (25°
C) | no | 1.1m**3/
min | 1993 | 10μm | | CAPMoN | 24hr | 0800-0800 | STP (
0°C) | yes | 25l/min | 1979 | ND | | CASTNet | 7 days | 0800-0800 | STP
(25°C) | yes | 1.5l/min
(E), 3l/min
(W) | 1987 | ND | | FPNT | 24hr | 0800-0800 | STP
(25°C) | no | 8.8I/min | 1988 -
1990 | 2.5μm | | GAViM | 24hr | 0001-2359 | Amb. | no | 22.9l/min, | 1994 -
2001 | 2.5μm | | IADN-A | 24hr | 0800-0800 | STP (
0°C) | yes & no | | 1988 | ND,
10μm | | IMPROVE | 24hr | 0000-0000 | Amb. | no | 22.8l/min,
16.9l/min | 1988 | 2.6μm,
10μm | | NAPS | 24hr | 0000-0000
or 0800-
0800 | STP
(25°C) | no | 16.7l/min. | 1992 | 2.5μm | # **Data Sources: Example** Network of Monitoring Sites Used to Create Graphs of Ambient Ozone, NOx and VOC Levels #### **NAtChem** ### **US Data Source: AQS** | Us http://www.epi Edit View Favorites | | airsaqs/detailda | ita/downloadaqso | lata.htm | | | | | | | | | | | ` | ✓ ★ X aqs | data | | |--|--|--|--|--|---|---|---|---|---|--|---|---|---|---|---|---|---|--| | rvert ▼ 🔂 Select | Tools Help | | | | | | | | | | | | | | | | | | | US AQS Data for Dow | nloading TTN | I AIRS AQS | | | | | | | | | | | | | | ∆ • ₪ | e 🖶 🔻 🕞 Pag | je ▼ 🧔 Too | | arly Raw Data Fil | es Retrie | ved From <i>I</i> | AQS | | | | | | | | | | | | | | | | | ar of data, zipped file si | | | - | on | | | | | | | | | | | | | | | | Pollutant
(Parameter Code)
le name (substitute year
for "yyyy") | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | | rbon Monoxide (42101)
_501_42101_yyyy.ZIP | 42101 2012
1045 KB
(18445KB)
05/12/12 | 42101 2011
11267 KB
(19627KB)
05/12/12 | 42101 2010
10763 KB
(199577KB)
05/12/12 | 42101 2009
10431 KB
(206445KB)
05/12/12 | 42101 2008
10566KB
(218168KB)
05/12/12 | 42101 2007
10649KB
(224159KB)
05/12/12 | 42101 2006
11021KB
(232867KB)
05/12/12 | 42101 2005
11771KB
(248359KB)
05/12/12 | 42101 2004
12176KB
(256346KB)
05/12/12 | 42101 2003
12603KB
(262955KB)
05/12/12 | 42101 2002
13248KB
(247597KB)
05/12/12 | 42101 2001
14703KB
(296633KB)
05/12/12 | 42101 2000
14576KB
(298284KB)
05/12/12 | 42101 1999
16114KB
(29428KB)
05/12/12 | 42101 1998
15125KB
(303718KB)
05/12/12 | 42101 1997
16700KB
(305235KB)
05/12/12 | 42101 1996
15371KB
(307367KB)
05/12/12 | 42101 19
16889KB
(305667K
08/8/11 | | ad - PB - daily
2128)
2501_12128_yyyy.ZIP | 12128 2012
1k
(3KB)
05/14/12 | 12128 2011
14k
(180KB)
05/14/12 | 12128 2010
221k
(293KB)
05/14/12 | 12128 2009
35KB
(521KB)
05/14/12 | 12128 2008
64KB
(949KB)
05/14/12 | 12128 2007
66 KB
(975KB)
05/14/12 | 12128 2006
75KB
(1138KB)
05/14/12 | 12128 2005
73KB
(1136KB)
05/14/12 | 12128 2004
70KB
(1105KB)
05/14/12 | 12128 2003
65KB
(1032KB)
05/14/12 | 12128 2002
67KB
(1065KB)
05/14/12 | 12128 2001
65KB
(1008KB)
05/14/12 | 12128 2000
60KB
(999KB)
05/14/12 | 12128 1999
65KB
(1070KB)
05/14/12 | 12128 1998
76KB
(1261KB)
05/14/12 | 12128 1997
92KB
(1546KB)
05/14/12 | 12128 1996
105KB
(1752KB)
05/14/12 | 12128 19
109KB
(1809KB)
05/14/12 | | ad from TSP-(PB TSP)
ily
4129)
_501_14129_yyyy.ZIP | 14129 2012
6KB
(90KB)
05/14/12 | 14129 2011
77KB
(1115KB)
05/14/12 | 14129 2010
71KB
(1039KB)
05/14/12 | 14129 2009
43 KB
(650KB)
05/14/12 | no data
reported | rogen Dioxide
2602)
2501_42602_yyyy.ZIP | 42602 2012
1431 KB
(24240KB)
05/16/12 | 42602 2011
13122 KB
(231692KB)
05/16/12 | 42602 2010
13424 KB
(240929KB)
05/16/12 | 42602 2009
12670KB
(237792KB)
05/16/12 | 42602 2008
12507KB
(242042KB)
05/16/12 | 42602 2007
12539KB
(245258KB)
05/16/12 | 42602 2006
12782KB
(248502KB)
05/16/12 | 42602 2005
12881KB
(249648KB)
05/16/12 | 42602 2004
13063KB
(253753KB)
05/16/12 | 42602 2003
12980KB
(250133KB)
05/16/12 | 42602 2002
13175KB
(253309KB)
05/16/12 | 42602 2001
13155KB
(252212KB)
05/16/12 | 42602 2000
13076KB
(250374KB)
05/16/12 | 42602 1999
12811KB
(243985KB)
05/16/12 | 42602 1998
12603KB
(240956KB)
05/16/12 | 42602 1997
13357KB
(234150KB)
05/03/10 | 42602 1996
11822KB
(224943KB)
05/16/12 | 42602 19
11786KB
(223379K
05/16/12 | | one (44201) - hourly
0_501_44201_yyyy.ZIP | 44201 2012
3481 KB
(59658KB)
05/16/12 | 44201 2011
38737KB
(654805KB)
05/16/12 | 44201 2010
11311 KB
(193234KB)
05/16/12 | 44201 2009
34823KB
(606589KB)
05/16/12 | 44201 2008
33408KB
(596563KB)
05/16/12 | 44201 2007
32857KB
(593365KB)
05/16/12 | 44201 2006
32017KB
(577963KB)
05/16/12 | 44201 2005
31673KB
(571826KB)
05/16/12 | 44201 2004
34293KB
(576694KB)
03/17/11 | 44201 2003
31813KB
(573405KB)
05/15/12 | 44201 2002
31380KB
(564171KB)
05/15/12 | 44201 2001
30788KB
(553675KB)
05/15/12 | 44201 2000
29797KB
(536082KB)
05/15/12 | 44201 1999
28755KB
(516593KB)
05/15/12 | 44201 1998
28134KB
(506173KB)
05/15/12 | 44201 1997
29536KB
(492660KB)
09/16/10 | 44201 1996
28350KB
(475202KB)
05/03/10 | 44201 19
28307KB
(473813K
05/03/10 | | ides of Nitrogen - NOX
2603)
_501_42603_yyyy.ZIP | 42603 2012
1221 KB
(20325KB)
05/14/12 | 42603 2011
12310 KB
(209879KB)
05/14/12 | 42603 2010
12309 KB
(215677KB)
05/14/12 | 42603 2009
11578 KB
(209020KB)
05/14/12 | 42603 2008
11262KB
(210332KB)
05/14/12 | 42603 2007
11079KB
(208599KB)
05/14/12 | 42603 2006
9794KB
(182248KB)
05/14/12 | 42603 2005
9661KB
(178325KB)
05/14/12 | 42603 2004
9644KB
(178711KB)
05/14/12 | 42603 2003
10413KB
(175607KB)
05/05/10 | 42603 2002
10409KB
(174900KB)
05/05/10 | 42603 2001
9979KB
(166840KB)
05/05/10 | 42603 2000
9901KB
(164951KB)
05/05/10 | 42603 1999
9866KB
(163132KB)
09/16/10 | 42603 1998
9416KB
(156798KB)
09/16/10 | 42603 1997
9129KB
(151451KB)
09/16/10 | 42603 1996
8989KB
(14357KB)
09/16/10 | 42603 19
8813KB
(145045K
09/16/10 | | MS VOC¹
_501_PAMS
IC_yyyy,ZIP | PVOC 2012
2994 KB
(49350KB)
05/16/12 | PVOC 2011
38826 KB
(670693KB)
05/16/12 | PVOC 2010
37098 KB
(639619KB)
05/16/12 | PVOC 2009
36215KB
(616406KB)
05/16/12 | PVOC 2008
36213KB
(613060KB)
05/16/12 | PVOC 2007
39874KB
(664006KB)
05/16/12 | PVOC 2006
37882KB
(627441KB)
05/16/12 | PVOC 2005
35216KB
(577851KB)
05/16/12 | PVOC 2004
32004KB
(526190KB)
05/16/12 | PVOC 2003
31405KB
(511644KB)
05/15/12 | PVOC 2002
33726KB
(565594KB)
05/15/12 | PVOC 2001
30967KB
(521106KB)
05/15/12 | PVOC 2000
30031KB
(507904KB)
05/15/12 | PVOC 1999
28841KB
(492765KB)
05/15/12 | PVOC 1998
27994KB
(471919KB)
05/15/12 | PVOC 1997
25102KB
(386472KB)
08/18/11 | PVOC 1996
19572KB
(300425KB)
08/18/11 | PVOC 199
14472KB
(223349KI
08/18/11 | | , - Local Conditions ⁴
8101)
501_88101_yyyy.ZIP | 88101 2012
957 KB
(16010KB)
05/16/12 | 88101 2011
8768 KB
(149980KB)
05/16/12 | 88101 2010
6345 KB
(105668KB)
05/16/12 | 88101 2009
3397KB
(56876KB)
05/16/12 | 88101 2008
1078KB
(16396KB)
05/16/12 | 88101 2007
784KB
(11187KB)
05/16/12 | 88101 2006
747KB
(10680KB)
05/16/12 | 88101 2005
791KB
(11257KB)
05/16/12 | 88101 2004
791KB
(11408KB)
05/16/12 | 88101 2003
803KB
(11594KB)
05/16/12 | 88101 2002
888KB
(12913KB)
05/16/12 | 88101 2001
884KB
(12797KB)
05/16/12 | 88101 2000
835KB
(12056KB)
05/16/12 | 88101 1999
624KB
(8392KB)
10/1/10 | 88101 1998
4KB
(48KB)
6/04/09 | 88101 1997
4KB
(9KB)
4/2/10 | no data
reported | no data
reported | | Fine Speciation ^{2,3,5}
0_501_SPEC_yyyy,ZIP | SPEC 2012
739 KB
(8275KB)
05/16/12 | SPEC 2011
5801 KB
(70667KB)
05/16/12 | SPEC 2010
5475 KB
(66692KB)
05/16/12 | SPEC 2009
6240KB
(68605KB)
08/19/11 | SPEC 2008
6915KB
(80947KB)
08/19/11 | SPEC 2007
7085KB
(80666KB)
08/19/11 | SPEC 2006
7750KB
(86013KB)
08/19/11 | SPEC 2005
8999KB
(99430KB)
08/19/11 | SPEC 2004
9178KB
(103442KB)
08/19/11 | SPEC 2003
8762KB
(97091KB)
08/19/11 | SPEC 2002
7568KB
(86644KB)
09/17/10 | SPEC 2001
3555KB
(42552KB)
09/17/10 | SPEC 2000
1197KB
(14330KB)
09/17/10 | no data
reported | | Fine Speciation-Blanks ⁶
_503_Blanks_yyyy.ZIP | BLANKS 2012
34KB
(471KB)
05/14/12 | BLANKS 2011
377KB
(5551KB)
05/14/12 | BLANKS 2010
754KB
(11047KB)
05/14/12 | BLANKS 2009
652KB
(9262KB)
05/14/12 | BLANKS 2008
669KB
(9261KB)
05/14/12 | BLANKS 2007
908KB
(12036KB)
05/14/12 | BLANKS 2006
1100KB
(14060KB)
05/14/12 | BLANKS 2005
1314KB
(16784KB)
05/14/12 | BLANKS 2004
1498KB
(20115KB)
05/14/12 | BLANKS 2003
1333KB
(17148KB)
05/17/12 | BLANKS 2002
952KB
(11994KB)
05/17/12 | BLANKS 2001
478KB
(6262KB)
05/17/12 | BLANKS 2000
117KB
(1658KB)
05/17/12 | no data
reported | | Fine Speciation-
PROVE ⁷
_501_IMPROVE_yyyy.ZIP | No Data
Reporte | No Data
Reported | IMPROVE 2010
4647KB
(47378KB)
08/19/11 | IMPROVE 2009
7106 KB
(72400KB)
08/19/11 | IMPROVE 2008
7226KB
(72858KB)
08/19/11 | IMPROVE 2007
8854KB
(85581KB)
08/19/11 | IMPROVE 2006
8566KB
(81956KB)
08/19/11 | IMPROVE 2005
8765KB
(91827KB)
05/16/12 | IMPROVE 2004
10911KB
(104936KB)
08/19/11 | IMPROVE 2003
9991KB
(94935KB)
08/19/111 | IMPROVE 2002
9090KB
(85601KB)
08/19/11 | IMPROVE 2001
7651KB
(71484KB)
08/19/11 | IMPROVE 2000
4960KB
(47694KB)
08/19/11 | IMPROVE 1999
3668KB
(37661KB)
08/19/11 | IMPROVE 1998
3757KB
(38032KB)
08/19/11 | IMPROVE 1997
3816KB
(38172KB)
08/19/11 | IMPROVE 1996
3642KB
(36436KB)
08/19/11 | IMPROVE
3554KB
(35289KB
08/19/11 | #### **Read AQS Data** ``` INFILE "&rawfile.*.txt" | Irecl=300 | delimiter="|" missover dsd; INPUT trantype $ actcode $ state county $ site $ @; ``` #### Read AQS Data ``` SELECT; WHEN (trantype="RD") DO; INPUT parameter_code :$char5. poc:$char1. sampdur:$char1. unit code:$char3. method_code :$char3. date:yymmdd10. start:time5. sampval nullcode:$char2. collfreq:$char1. altmpid:$char1. qual1: $char2. qual2: $char2. qual3: $char2. qual4: $char2. qual5: $char2. qual6: $char2. qual7: $char2. qual8: $char2. qual9: $char2. qual10: $char2. methdl uncert; ``` #### **Read AQS Data** ``` SELECT: WHEN(sampdur EQ '1') DO; * Hourly; smdtend = smdtstr + 3600; END: WHEN(sampdur EQ 'H') DO; * 5 minute; smdtend = smdtstr + 300; END: WHEN(sampdur EQ '7') DO; * Daily; smdtend = smdtstr + 86400; END; OTHERWISE DO: IF sampdur NE _prev_sampdur THEN PUT 'WARNING: Excluding non-standard sampling period: ' sampdur= 'hrs, ' orgstnid= method code = ; DELETE: END; END; * end select; ``` # **Assign Metadata Fields** - Parameter code & description - Method code & Sample analysis description - Unit code & description - Sample duration - Sample collection description - Method detectable limit - Unit and/or STP conversion: description - Unit and/or STP conversion: equation / constant - NAtChem variable name / unit # **Assign Metadata and Transform Data** | A | В | C | D | E | F | G | Н | | J | K | L | М | N | 0 | |-----------|-----------------------------|----------------|----------------------------------|--------------|-----------------------|--------------------|---------------------------------|----------------------------|------------------------------------|--|---------------------|-------|--------------------|--------------| | parameter | parameter description | method
code | | unit code | unit description | sample
duration | sample collection description | method
detectable limit | Unit and/or STP conversion formula | Unit and/or STP
conversion
formula | natchem
var name | | Load Data
(Y/N) | raw var name | | 2 11101 | SUSPENDED PARTICULATE (TSP) | 079 | | 001 | UG/CUBIC METER (25 C) | 4 | Instrumetrial R&P M1400A TSP HD | 1 | stp correction to OC | 298/273 | TSP | ug/m3 | Y | TSP_T | | 3 11101 | SUSPENDED PARTICULATE (TSP) | 7091 | | 7 001 | UG/CUBIC METER (25 C) | 'n | HI-VOL | 1 | stp correction to OC | 298/273 | TSP | ug/m3 | Y | TSP | | 4 11101 | SUSPENDED PARTICULATE (TSP) | 092 | | 0 01 | UG/CUBIC METER (25 C) | 7 | MEMBRANE-SAMPLER | 1 | stp correction to OC | 298/273 | TSP | ug/m3 | Y | TSP_M | | 5 11101 | SUSPENDED PARTICULATE (TSP) | 802 | | 7 001 | UG/CUBIC METER (25 C) | 7 | HI-VOL | 1 | stp correction to OC | 298/273 | TSP | ug/m3 | N | TSP_H | | 6 12306 | NITRATE (TSP) | 092 | | 7 001 | UG/CUBIC METER (25 C) | 7 | HI-VOL | 0.05 | stp correction to OC | 298/273 | NO3_ | ug/m3 | Y | NO3_TR | | 7 12306 | NITRATE (TSP) | 096 | Ion Chromatograph Conductimetric | | UG/CUBIC METER (25 C) | 7 | HI-VOL | 0.05 | stp correction to OC | 298/273 | NO3 | ug/m3 | Y | NO3_TH | | 8 12403 | SULFATE (TSP) | 7 091 | 2.1 | 7 001 | UG/CUBIC METER (25 C) | 7 | HI-VOL | 0.5 | stp correction to OC | 298/273 | SO4_ | ug/m3 | Y | SO4_TC | | 9 12403 | SULFATE (TSP) | 7 092 | | 7 001 | UG/CUBIC METER (25 C) | 7 | HI-VOL | 0.5 | stp correction to OC | 298/273 | SO4_ | ug/m3 | Y | SO4_TT | | 10 12403 | SULFATE (TSP) | 093 | | 7 001 | UG/CUBIC METER (25 C) | 7 | HI-VOL | 1 | stp correction to OC | 298/273 | SO4_ | ug/m3 | Y | SO4_TC | | 11 12403 | SULFATE (TSP) | 7 096 | Ion Chromatograph Conductimetric | 7 001 | UG/CUBIC METER (25 C) | 7 | HI-VOL | 0.5 | stp correction to OC | 298/273 | S04 | ug/m3 | Y | S04_TH | | 12 16111 | CARBON BLACK | 7011 | Model AE 20 Optical Absorption | ' 001 | UG/CUBIC METER (25 C) | 4 | Instrumental Magee Scien | 0.005 | stp correction to OC | 298/273 | LAC | ug/m3 | Υ | LAC | | 13 42101 | CARBON MONOXIDE | * 008 | NonDispersive Infrared | * 007 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.5 | no conversion | | 00 | ppm | Υ | CO_I | | 14 42101 | CARBON MONOXIDE | * 008 | NonDispersive Infrared | 1 087 | Parts per ten million | 4 | INSTRUMENTAL | 0.5 | conversion from 10 ppm to ppm | 7 0.1 | 00 | ppm | Y | CO_I | | 15 42101 | CARBON MONOXIDE | 7 011 | NonDispersive Infrared | 0 07 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.5 | no conversion | | 00 | ppm | Y | CO_I | | 16 42101 | CARBON MONOXIDE | 1 012 | NonDispersive Infrared | 0 07 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.5 | no conversion | | CO | ppm | Y | CO_I | | 17 42101 | CARBON MONOXIDE | 7 013 | Detection Tube | 007 | PARTS PER MILLION | 4 | INSTRUMENTAL | 5 | no conversion | | CO | ppm | Y | CO | | 18 42101 | CARBON MONOXIDE | 1 014 | Dual Isotope Florescence | 0 07 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.4 | no conversion | | 00 | ppm | Y | CO_D | | 19 42101 | CARBON MONOXIDE | 1 018 | | 0 07 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.5 | no conversion | | 00 | ppm | Y | CO_I | | 20 42101 | CARBON MONOXIDE | 1 021 | Gas Chromatographic | 007 | PARTS PER MILLION | 1 | INSTRUMENTAL | 0.5 | no conversion | | 00 | ppm | Y | CO_G | | 21 42101 | CARBON MONOXIDE | 1 033 | NonDispersive Infrared | 007 | PARTS PER MILLION | 1 | INSTRUMENTAL | 0.5 | no conversion | | CO | ppm | Y | 00_1 | | 22 42101 | CARBON MONOXIDE | 7 041 | | 007 | PARTS PER MILLION | 1 | INSTRUMENTAL | 0.5 | no conversion | | 00 | ppm | Y | 00_1 | | 23 42101 | CARBON MONOXIDE | * 048 | ' | 007 | PARTS PER MILLION | 1 | INSTRUMENTAL | 0.5 | no conversion | | CO | ppm | Y | 00_1 | | 24 42101 | CARBON MONOXIDE | 050 | NonDispersive Infrared | 007 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.5 | no conversion | | 00 | ppm | Y | 00_I | | 25 42101 | CARBON MONOXIDE | 051 | | 007 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.5 | no conversion | | CO | ppm | Y | CO_I | | 26 42101 | CARBON MONOXIDE | 054 | NonDispersive Infrared | 007 | PARTS PER MILLION | 4 | INSTRUMENTAL | 0.5 | no conversion | | Ω | ppm | Y | CO_I | ### Map to NAtChem Metadata Fields - Station ID - Sample start date/time (local standard time) - Sample end date/time - Variable name - Instrument type - Sampling media or principle - Coating or absorbing solution / media - Humidity or temperature control ... continued # Map to NAtChem Metadata Fields - Inlet type - Size cut - Sample analysis method - Solubility type - Standard temperature and pressure - Blank correction - Value - NAtChem flag #### **NAtChem Database** | | × ↓a ↓z [| | S 🔯 🧇 | | | | | | | | | | | | | | | | |----------|-----------------------|---------------------------|---------------|--------------------|------------------------------------|---|---------------------------------------|---------------|----------|------------------------------|--------------------|---------------------------------------|------------------|------------------|-----------------|---------------|-------------------------|---------------------| | CATEGORY | NAtChem Station
ID | Sample Start
Date/Time | Variable Name | Instrument
Type | Sampling
Media or
Principals | Coating or
Absorbing
Solution/Media | Humidity or
temperature
Control | Inlet
Type | Size Cut | Sample
Analysis
Method | Solubility
Type | Standard
Pressure &
Temperature | Blank-Correction | NAtChem
Value | NAtChem
Flag | Original Flag | Sample End
Date/Time | Date Data
Loaded | | FLT | AIRSUSAK1JNU | 02JAN10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 18.9 | V0 | | 03JAN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 08JAN10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 4.7 | V0 | | 09JAN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 14JAN10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 5.9 | V0 | | 15JAN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 20JAN10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 16.9 | V0 | | 21JAN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 26JAN10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 18.7 | V0 | | 27JAN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 01FEB10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 18.2 | V0 | | 02FEB10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 07FEB10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 1.1 | V1 | | 08FEB10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 13FEB10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 10.5 | V0 | | 14FEB10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 19FEB10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 19.6 | V0 | | 20FEB10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 25FEB10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 6.2 | V0 | | 26FEB10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 03MAR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 2.9 | V0 | | 04MAR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 09MAR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 1.9 | V1 | | 10MAR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 18MAR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 7.2 | V0 | | 19MAR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 21MAR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 10.3 | V0 | | 22MAR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 27MAR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 1.9 | V1 | | 28MAR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 02APR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 9.5 | V0 | | 03APR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 08APR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 6.2 | VO | | 09APR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 14APR10:00:01 | PM2 5 | GRV | TF | N A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 7.8 | V0 | | 15APR10:00:01 | 14MAY201 | | FLT | AIRSUSAK1JNU | 20APR10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 2.3 | V0 | | 21APR10:00:01 | 14MAY201 | | FLT | AIRSUSAK1JNU | 26APR10:00:01 | PM2_5 | GRV | | | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 4.8 | V0 | | 27APR10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 02MAY10:00:01 | PM2 5 | GRV | TF | N A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 2 | V0 | | 03MAY10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 08MAY10:00:01 | PM2 5 | GRV | TF | N A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 7.4 | V0 | | 09MAY10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 14MAY10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 6 | V0 | | 15MAY10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 20MAY10:00:01 | PM2 5 | GRV | | | NONE | IEL | LE2P5 | MBAL | | AMB | BC | 5.7 | V0 | | 21MAY10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 26MAY10:00:01 | PM2 5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 5.7 | V0 | | 27MAY10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 01JUN10:00:01 | PM2_5 | GRV | | | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 4.6 | V0 | | 02JUN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 07JUN10:00:01 | PM2 5 | GRV | | | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 4.7 | V0 | | 08JUN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 13JUN10:00:01 | PM2 5 | GRV | | _ | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 1.6 | V1 | | 14JUN10:00:01 | 14MAY201 | | FLT | AIRSUSAK1JNU | 19JUN10:00:01 | PM2_5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 5 | V0 | | 20JUN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 25JUN10:00:01 | PM2 5 | GRV | | | | IEL | LE2P5 | MBAL | | AMB | BC | 2.4 | V0 | | 26JUN10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 01JUL10:00:01 | PM2 5 | GRV | TF | N_A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 2 | V0 | | 02JUL10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 08JUL10:00:01 | PM2_5 | GRV | | | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 6 | V0 | | 09JUL10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 13JUL10:00:01 | PM2 5 | GRV | TF | N A | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 3 | V0 | | 14JUL10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 19JUL10:00:01 | PM2 5 | GRV | | | | IEL | LE2P5 | MBAL | | AMB | BC | 3.9 | V0 | | 20JUL10:00:01 | 14MAY2012 | | FLT | AIRSUSAK1JNU | 25JUL10:00:01 | PM2_5 | GRV | | _ | NONE | IEL | LE2P5 | MBAL | NONE | AMB | BC | 6.3 | VO | | 26JUL10:00:01 | 14MAY2012 | | | | 31JUL10:00:01 | PM2 5 | GRV | | - | | IEL | LE2P5 | MBAL | | AMB | BC | | V0 | | 01AUG10:00:01 | 14MAY2012 | | | AIRSUSAK1JNU | 06AUG10:00:01 | PM2_5 | GRV | | | | IEL | LE2P5 | MBAL | | AMB | BC | | V1 | | 07AUG10:00:01 | 14MAY2012 | | | AIRSUSAK1JNU | 12AUG10:00:01 | PM2_5 | GRV | | | | IEL | LE2P5 | MBAL | | AMB | BC | | VO | | 13AUG10:00:01 | 14MAY201 | | | AIRSUSAK1JNU | 18AUG10:00:01 | PM2 5 | GRV | | _ | | IEL | LE2P5 | MBAL | | AMB | BC | | V0 | | 19AUG10:00:01 | 14MAY201 | | | | 24AUG10:00:01 | PM2 5 | GRV | | | | IEL | LE2P5 | MBAL | | AMB | BC | | V0 | | 25AUG10:00:01 | 14MAY201 | | | AIRSUSAK1JNU | 30AUG10:00:01 | PM2 5 | GRV | | | | IEL | LE2P5 | MBAL | | AMB | BC | | VO | | 31AUG10:00:01 | 14MAY201 | | | AIRSUSAK1JNU | 05SEP10:00:01 | PM2 5 | GRV | | - | | IEL | LE2P5 | MBAL | | AMB | BC | | V0 2 | 1 | 06SEP10:00:01 | 14MAY201 | | | AIRSUSAK1JNU | 11SEP10:00:01 | PM2 5 | GRV | | - | | IEL | LE2P5 | MBAL | | AMB | BC | | V0 | | 12SEP10:00:01 | 14MAY201 | | | AIRSUSAK1JNU | 17SEP10:00:01 | PM2_5 | GRV | | | | IEL | LE2P5 | MBAL | | AMB | BC | 17.3 | | | 18SEP10:00:01 | 14MAY201 | | | AIRSUSAKIJNU | 23SEP10:00:01 | PM2_5 | GRV | TF | N_A | | IEL | LE2P5 | MBAL | | AMB | BC | | V0 | | 24SEP10:00:01 | 14MAY201 | | | | 29SEP10:00:01 | PM2_5 | GRV | | N_A | | IEL | LE2P5 | MBAL | | AMB | BC | | VO | | 30SEP10:00:01 | 14MAY2012 | # **NAtChem Database Facility** Environment Canada Environnement Canada #### **NAtChem Database** - Read program for each data source - Standard names, units, date/time, metadata - Combining of data - Select parameters - Determine metadata criteria - Obtain latest version of data from source - Read data into NAtChem - Perform analysis # Integrating US and Canadian air monitoring data: sources | MAJOR ROUTINE OPERATING AIR MONITORING NETWORKS: State / Local / Tribal / Federal Networks | | | | | | | | | | | | | |---|-------------------------------------|-----------|---|--|--|--|--|--|--|--|--|--| | Network ¹ | Sites | Initiated | Measurement
Parameters | Source of Information and/or Data | | | | | | | | | | | | Urban/Hur | man-Health Monitoring | | | | | | | | | | | NCore – National Core
Monitoring Network | ~80
planned | 2011 | O ₃ , NO/NO _y , SO ₂ , CO,
PM _{2.9} /PM _{10.2.5} , PM _{2.5}
speciation, surface
meteorology | http://www.epa.gov/ttn/amtic/ncore/index.html | | | | | | | | | | SLAMS – State and Local
Ambient Monitoring
Stations | ~3000 | 1978 | O ₃ , NO _x /NO ₂ , SO ₂ ,
PM _{2.5} /PM ₁₀ , CO, Pb | http://www.epa.gov/airexplorer/ | | | | | | | | | | CSN – PM _{2.5} Chemical
Speciation Network | ~200
currently
active | 1999 | PM _{2.5} mass, PM _{2.5}
speciation, major ions,
Metals | http://www.epa.gov/airexplorer/ | | | | | | | | | | PAMS – Photochemical
Assessment Monitoring
Network | 75 | 1994 | O ₃ , NO _x /NO _y , CO,
speciated VOCs,
carbonyls, surface
meteorology, upper air | http://www.epa.gov/ttn/amtic/
pamsmain.html | | | | | | | | | | | | Rural/R | Regional Monitoring | | | | | | | | | | | IMPROVE – Interagency
Monitoring of Protected
Visual Environments | 110
plus 67
protocol
sites | 1988 | PM _{2.9} /PM ₁₀ , major
ions, metals, light
extinction, scattering
coefficient | http://vista.cira.colostate.edu/
IMPROVE/ | | | | | | | | | | CASTNET – Clean Air
Status and Trends
Network | 80+ | 1987 | O ₃ , weekly
concentrations of
SO ₂ , HNO ₃ , SO ₄ ² -,
NO ₃ ⁻ , Cl ⁻ , NH4 ⁺ , Ca ²⁺ ,
Mg ²⁺ , Na ⁺ , K ⁺ for dry
and total deposition,
surface meteorology | www.epa.gov/castnet/ | | | | | | | | | | GPMP – Gaseous
Pollutant Monitoring
Program | 33 | 1987 | O ₃ , NO ₂ /NO/NO ₂ ,
SO ₂ , CO, surface
meteorology,
enhanced monitoring
of CO, NO, NO ₃ , NO ₃
and SO ₂ , canister
samples for VOC at
three sites | www.nature.nps.gov/air/Monitoring/
network.htm#data | | | | | | | | | # **Summary** - The key to successfully integrating US and Canadian air monitoring data is in the metadata. - Taxonomies - Key characteristics - Quality assurance - Data versioning #### References - The Canadian National Atmospheric Chemistry (NAtChem) Database and Analysis Facility (<u>www.ec.gc.ca/natchem</u>) - 2012 Canadian Smog Science Assessment Highlights and Key Messages (http://www.ec.gc.ca/air/default.asp?lang=En&n=72F82C27-1) - 2010 Canada—United States Air Quality Agreement: Progress Report ISDM-444 (http://www.ec.gc.ca/Publications/default.asp?lang=En&xml=4B98B185-7523-4CFF-90F2-5688EBA89E4A) - AQS Data: http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm